
 

Technical Appendix 
For state-level reports on the effect of solar smart permitting 
by Greenhouse and the Climate Solutions Lab 

The model is based on a set of benchmarks, which provide a detailed representation 
of the average hard and soft costs involved in solar photovoltaic projects. We use 
these to create a baseline or reference scenario which projects the 
“business-as-usual” price of solar in the absence of smart permitting. 
 
We only model costs for a generic solar installer, and do not generate different 
estimates for different sizes of firms. Some small firms may face lower acquisition 
costs because they build long-term relationships with a few neighborhoods, but also 
face higher equipment costs because they lack negotiating power. A large firm might 
have greater economies of scale but also deal with more cancellations. Lean firms 
may have lower overhead. Firms may find themselves making lower profits. Because 
of the diversity of the solar installation market, our model cannot perfectly capture 
the prices faced by every firm at the same time. 
 
We project outcomes through 2040. Projections are intended to capture both the 
immediate “first-order” effects of smart permitting, as well as longer-term 
“second-order” effects that only materialize as market participants change their 
business models in response. All of the projections are subject to uncertainty, 
especially as we get further from the present. 

Baseline Hard Costs 
Hard costs include the price of modules, inverters, and electrical and structural 
balance of system expenses. To estimate hard costs, we use the National Renewable 
Energy Laboratory (NREL) benchmarks for residential solar photovoltaic systems 
(Ramasamy et al. 2022).1 These are derived from bottom-up modeling, using input 
price data and interviews with firms to derive average national costs. We use their 
“Modeled Market Price” (MMP) as our starting point, which is designed for “[n]ear-term 
policy and market analysis based on disaggregated system costs.”  
 

1 We use Ramasamy et al. (2022) rather than Ramasamy et al. (2023) because methodological 
changes between these versions mean that some cost components are no longer broken down 
conveniently in the way needed to make our state-level adjustments. 

 



 

The Ramasamy et al. (2022) prices are reported in 2021 dollars, which we convert to 
2023 dollars using the Federal Reserve Bank of Minneapolis’ Inflation Calculator.2 We 
assume that hard costs are primarily determined at the national level and do not 
make state-level adjustments for them. 
 
To project how hard costs will change over time we use NREL’s Annual Technology 
Baseline (NREL 2024b), which models energy technology cost changes in different 
scenarios. We use their “Conservative” scenario for residential solar photovoltaics, 
which assumes: 

●​ an expanding market for solar photovoltaic systems, 
●​ hard cost reductions on the low end of manufacturers’ expectations, 
●​ no changes in soft costs, 
●​ additional trade barriers which limit the cost reducing effect of competition 

from foreign manufacturers. 
 
We base our estimate of hard cost changes on the ATB’s projections for Capital 
Expenditure per kW of capacity. Because the scenario we use does not assume any 
soft cost changes, we assume that all of the projected changes in capital expenditure 
are due to changes in hard costs and any effect hard cost changes have on installer 
profit margins. 
 
We model the costs for a representative photovoltaic system size, designed to roughly 
match the median system size in the state (6.4 kW).3 Our representative system has 
18 modules, each with an efficiency of 0.203, an area of 1.77 m2, and an average 
radiation under standard test conditions of 1000 W, for a total capacity of 6.47 kW. 
Except for size this matches the parameters in Ramasamy et al. (2022). 
 
Modeling was primarily carried out in Excel, with data preparation and cleaning 
performed in Python. Modeling of hourly energy use and utility charges was performed 
in the NREL System Advisor Model (NREL 2024c). 

Baseline Soft Costs 
Soft costs include customer acquisition, permitting, inspection, interconnection, 
installation labor, overhead, sales tax, and installer profits. We use two different soft 
cost benchmarks and derive two parallel sets of estimates from them.  
 
The first set of soft cost benchmarks are largely derived from Ramasamy et al. (2022), 
with modifications for the state context. As with hard costs, we use their “Modeled 

3 Median system size is from Barbose et al. (2024). Unless otherwise specified all watt and 
kilowatt values are expressed as direct current. 

2 The inflation calculator is based on the urban consumer price index (Minneapolis Fed 2024). 
All other prices in our model are reprojected to 2023 dollars. 



 

Market Price” estimates for soft costs. But as the authors carefully note, the MMP is 
not the same as the market prices actually observed in the real world, and can be 
substantially lower than observed prices.4 We expect the discrepancy to affect soft 
costs much more than hard costs, since soft costs are determined more by local 
factors like labor costs and permitting regimes. 
 
A top-down approach using locally reported market prices would capture the prices 
consumers actually face. But it would lack the disaggregated component cost 
estimates we need in order to model how smart permitting will change different cost 
components. We resolve this by taking the MMP and adjusting specific components to 
match more closely current input prices in the state. 

Soft Costs Based on NREL Data 
We make the following changes to the Ramasamy et al. (2022) MMP: 
 

●​ Customer acquisition: We replace the MMP estimate with the most recent 
estimate from energy analytics firm Wood Mackenzie, which projects that CAC 
will be $0.87/W in 2024, and decline by 1% annually through at least 2028 
(McGarvey 2023). For our model, we assume that baseline CAC costs will 
continue to decline by 1% annually after 2028.5 

●​ Permitting, interconnection, and inspection (PII): These are bundled in MMP 
into one fixed cost per project, but given our focus on permitting it is 
important to disaggregate these costs.  

○​ We build a bottom-up model of these costs, starting with the average 
hours required for permit preparation, permit submission, inspection, 
interconnection, and incentive applications from Seel et al. (2014). We 
combine these with estimates of the share of different occupations in 
completing each of these tasks from Ardani et al. (2012). We obtain 2023 
occupational wage data for the state from BLS (2024a).6 We scale up 
wages to fully-loaded employer costs in the same way as with 
installations above (BLS 2024b). 

○​ To take into account the labor involved with permit applications that 
take longer than expected, we assume that 35% of permits need to be 

6 We match the “permit procurement” class in Ardani et al. (2012) to “project management 
specialists” in BLS (2024a), “administrative staff” to “office clerks, general,” ‘installer” to “solar 
photovoltaic installer,” and “electrician” to “electricians.” 

5 These costs are high relative to the Ramasamy et al. (2022) benchmark, but they are in line 
with other reports, like Ardani et al. (2012), which report CAC of $0.67/W in 2012, which would 
be $0.89/W in 2023, and with our own discussions with installers. 

4 “[N]o individual estimate under any approach can reflect the diversity of the PV and storage 
manufacturing and installation industries. The MMP benchmarks are designed to reflect typical 
costs, but these costs do not reflect the experiences of all installers and customers. For 
instance, MMP benchmarks are based on national average costs and do not necessarily reflect 
the distinct experiences of developers in local markets.” Ramasamy et al. (2023), p. 17. 



 

submitted twice.7 We model this by adding 35% of the cost of permit 
preparation and submission to the overall cost for the average permit. 

○​ We use data on permit fees from SolarTRACE (NREL 2024a) and take the 
average, weighted by installations in each jurisdiction. 

●​ Installation: MMP installation costs are a blend of construction labor 
(0.56/hours per m2

 of panels) and electrician labor (0.51/hours per m2
 of panels). 

We use state-specific wage rates for solar photovoltaic installers and 
electricians from BLS (2024a), scaled up by using the average ratio of 
fully-loaded employer costs to employee wages in the "natural resources, 
construction, and maintenance occupations” (BLS 2024b).  

●​ Overhead: Overhead costs in the MMP are presented as a fixed amount ($2,389 
per project). But many overhead costs are sensitive to local costs like labor, 
taxes, energy prices, rents, etc. So we scale MMP overhead to state price levels 
using the regional price parities from the Bureau of Economic Analysis (2024), 
which “measure the differences in price levels across states and metropolitan 
areas for a given year and are expressed as a percentage of the overall national 
price level.” 

●​ Sales tax: the MMP includes a sales tax rate of 5.1%, but we set it to the state 
rate, unless the state exempts solar installations from sales tax.8 

●​ Profit: the MMP rate of profit is fixed at 17% of “all direct costs, including 
hardware, installation labor, sales tax, installation, and permitting fees,” 
excluding customer acquisition costs and overhead. We leave this unmodified 
initially, though the absolute size changes in our model as the other direct 
costs change. 

 
Our estimates are somewhat lower than the reported market prices in Barbose et al. 
2024, but our estimates do not include financing costs, which may change the full 
costs faced by consumers. 

Soft Costs Based on OpenSolar Data 
To complement our MMP estimates, we also use a second source of soft cost 
benchmarks from OpenSolar, a solar design and sales application with aggregate data 
on many solar installers’ cost structures.9 These data were structured slightly 
differently than the Ramasamy et al. (2022) benchmarks. 
 

●​ Customer acquisition: unlike the MMP data, the OpenSolar data breaks out 
customer acquisition into upfront sales and marketing and post-sales costs 

9 These cost estimates were shared directly in aggregate form by OpenSolar staff, without 
revealing any individual customer data. 

8 DSIRE (2024). 

7 The 35% figure is from our consultation with OpenSolar (see discussion below on this 
source). 



 

(i.e. commissions). The OpenSolar customer acquisition cost estimate is 
$0.54/W. This is lower than the Wood Mackenzie cost, which we attribute to 
the exclusion of customer care costs. 

●​ Customer care: this line item includes the costs of arranging site visits, 
managing schedule changes, and setting up installations, as well as changing 
orders and arranging new visits and contracts when revisions are made. The 
OpenSolar estimate includes specific line items for initial work with customers 
as well as follow-up work after revisions. We adjust the fully-loaded hourly 
labor costs using regional price parities (BEA 2024), and follow OpenSolar in 
assuming a 35% revision rate. 

●​ Design and engineering: this line item covers planset creation and redesigning 
plansets after design changes. As with customer care we adjust the costs using 
regional price parities (BEA 2024) and assume a 35% revision rate. 

●​ Site visits: this line item covers the actual truck rolls to the site for design and, 
when necessary, revisits to accommodate redesigns after permit rejections. We 
make the same adjustments as for design and engineering above. 

●​ Overhead: OpenSolar provides three estimates of overhead, including project 
management costs, software and operating expenses for customer care and 
design and engineering, and other general overhead. The OpenSolar figures do 
not include a specific profit estimate, so this would be part of the general 
overhead figure. The management cost assumes a management payroll of 
$140,000/year divided by 1200 projects/year. The software and operating 
expenses assume a fixed cost of $155,000/year divided by 1200 projects/year. 
Converting them to a per system cost and then a per watt cost using our 
representative system, and adding the general overhead cost per watt, we 
arrive at a baseline estimate, to which we then apply the regional price parity 
adjustment.  

●​ Permitting, inspection, and interconnection: this includes permit fees and 
truck rolls to the jurisdiction and to the site for permits, inspections, and 
interconnections.  

○​ We replace the national estimate of the average permit fee with the 
state-specific average permit fee. We calculate the state-specific fee by 
taking an average of medians fee by jurisdiction in SolarTRACE (NREL 
2024a), weighted by each jurisdiction’s share of solar installations in the 
state from 2017 through 2023.  

○​ OpenSolar assumes that roughly 50% of permits need to be submitted in 
person, but this is a national estimate. To calculate the share of state 
jurisdictions with online submission, we used NREL’s SolarTRACE (NREL 
2024a) dataset and divided the number of jurisdictions with confirmed 
online permitting by the total number of jurisdictions in the state.  

●​ Installation: OpenSolar records this as a flat labor cost per watt, which we 
convert using price parities. 

 



 

In our baseline scenario we do not assume any changes in soft costs over time, given 
that soft costs have remained roughly stable in recent years. 
 
By using two mostly independent cost models built through different methods 
(bottom-up estimates from industry surveys versus data from a software platform 
serving the solar industry), we increase our confidence that we are capturing realistic 
costs for solar installers. 

Cancellations 
Neither the NREL or OpenSolar figures include a specific line item for expenses 
related to projects that are cancelled before installation. But surveyed installers 
report that permitting is a major driver of cancellations (Cook et al. 2021), and we 
expect those cancellations to generate costs that must be spread across remaining 
projects. We do not add these cancellation costs directly to the models just 
described. Instead, we assume that the overhead costs in those sources already 
incorporates cancellation-related expenses.  
 
We estimate the size of those expenses using the following procedure, combining 
state-level cancellation rates from Ohm Analytics (2024) with installer assessments 
of the share of cancellations that are driven by permitting (Cook et al. 2021). 
 

●​ According to Cruce et al. (2022), 22% of projects that reach the permitting 
stage nationally are unsuccessful. Only 2% of projects end during the 
permitting stage itself. But installers also rate permitting delay as the most 
important factor in customer cancellations (Cook et al. 2021), a sentiment 
consistent with our own installer interviews. We interpret this to mean that 
permitting delays do cause consumers to cancel, but that there is little 
pressure for them to make the final decision until the permit is approved, 
when allowing the project to continue would actually incur additional costs for 
them.  

●​ Ohm Analytics provided data on the permitting process for 68,449 solar 
photovoltaic projects that submitted applications across 83 jurisdictions in our 
states of interest between the second quarter of 2022 and the first quarter of 
2024. We used these to estimate state-level cancellation rates, subtracting the 
number of finaled permits from the number of initial applications, and dividing 
it by the number of initial applications. 

●​ To estimate how many of these cancellations are due to the permitting process 
itself, we use results from a survey by Cook et al. (2021), where installers report 
the most important reasons for cancellations. We estimate the 
permitting-driven cancellation rate as the state-level post-application 
cancellation rate multiplied by the share of respondents that view permitting 
as the most important driver of cancellations (37%) plus half the share that 



 

view permitting as the second most important driver of cancellations (21%, 
divided by 2). We multiply this by the post-application cancellation rate to 
estimate the rate of permitting-driven cancellation. 

●​ Using that rate, we can infer the number of projects that would have been 
completed in the absence of permitting-induced cancellations in each state 
(multiplying the number of completed projects by 1 / (1 - % of Cancellations 
driven by permitting in the state). 

●​ We estimate the cost of a single cancelled project by assuming that a share of 
each project’s costs cannot be recovered when a project is cancelled after the 
permitting application has already been submitted. 

○​ For the model based on Ramasamy et al. (2022), we assume that the 
permit fee and labor costs for permit preparation, submission, and 
revision cannot be recovered. This represents 77% of the total 
permitting, inspection, and interconnection costs. We assume that at 
least 50% of overhead costs per project have been incurred by the time 
of cancellation and cannot be recovered. Data from OpenSolar suggests 
that 70% of customer acquisition costs are incurred before the sale 
(with 30% only being paid after successful installation), and so we 
assume that each cancelled project also incurs 70% of a successful 
project’s customer acquisition costs. To partially offset these costs, we 
assume installers can keep a $500 security deposit.  

○​ For the model based on OpenSolar data, we use a similar procedure but 
with a slightly different list of included items reflecting this dataset’s 
different organization of costs. We assume permit fees, design and 
engineering expenses, site visits, and labor and travel costs for permit 
preparation, submission, and revision cannot be recovered after 
cancellation. We assume 50% of overhead and customer care expenses 
are lost, and 70% of customer acquisition costs (see above). We assume 
the same $500 security deposit.  

●​ We apply the cost per cancelled project to the remaining uncancelled projects, 
assuming that these costs are incorporated into the general overhead costs of 
solar installation firms. 

Cost Changes Induced by Smart Permitting 
In order to model how smart permitting changes sales prices for solar, we first need 
to model how smart permitting changes costs for solar installers. 

Gradual Realization of Potential Cost Reductions 
For the following calculations, we start by estimating the potential cost reductions 
that would be made possible by smart permitting. But we do not assume that all 
these potential cost reductions will be realized instantly. Even if installers were to 



 

instantly pass on any cost reductions to their consumers, it would still take time for 
those cost reductions to materialize. Firms need time to adjust and reconfigure their 
business processes. Some effects depend on factors like word-of-mouth 
recommendations, which also take time to accumulate. There may be an adjustment 
period for jurisdictions as well. And once cost reductions do arrive it may take time 
for competition to drive pass-through to consumers. 
 
To reflect the gradual nature of market transformation, we assume that the potential 
cost reductions are only realized slowly at first, but then gather speed as more firms 
adjust, innovations begin to diffuse, new firms enter, and competition drives 
pass-through. We model this process using a logistic function, assuming the the 
realization rate for price reductions starts near 0 in 2025, rises to 50% in 2030, and 
nears 100% only in 2035.10 All cost changes in the following subsections are subject to 
this gradual phase-in. 

Potential Cost Changes 
●​ Hard costs: we do not model any changes to hard costs due to smart 

permitting beyond the decreases in the baseline scenario. 
●​ Customer acquisition: In the baseline scenario, customer acquisition costs go 

down by 1% a year. But we expect smart permitting to increase reductions. We 
model these changes to customer acquisition costs in two ways. 

○​ First, we expect permitting to create a marginal upfront reduction in 
customer acquisition costs. Installers can offer more certain installation 
timelines if they know they can obtain instant permit approval for most 
projects. Salespeople can get paid more quickly because the delay 
between contract signing and installation is shorter. And shorter projects 
with better customer experiences should improve recommendation 
rates, helping make future customer acquisition easier. We model these 
combined impacts as an initial 5% reduction in customer acquisition 
costs, which we consider a conservative estimate based on our 
interviews with installers. 

○​ Second, as smart permitting reduces prices, we assume that the 
resulting increases in demand will also bring down the marginal cost of 
customer acquisition. This is partly due to spreading some of the fixed 
costs of customer acquisition over a higher number of completed 
projects, and the anticipated increase in “peer effect” recommendations 
as more people experience shorter projects. To model this, we assume 
that firms’ total customer acquisition costs go up sub-linearly with 
respect to sales volume. Specifically, we assume that if total sales 

10 For the logistic function the carrying capacity L is 1, the logistic growth rate k is 1, the 
midpoint xo is 2030, and x is the current year. 



 

increase by X percent, then total customer acquisition costs only go up 
by X/2 percent, reducing the customer acquisition cost per project. 

●​ Permitting, inspection, and interconnection: To model permitting labor cost 
reductions, we assume that the labor time involved in each permitting task 
decreases to match the time for the equivalent task in Germany (Seel et al. 
2014). We also assume that permit revisions no longer require additional time, 
since issues can be resolved during the initial submission. We assume that 
jurisdictions do not reduce the fees they charge for permits, but also that they 
use a portion of these fees to cover the cost of the smart permitting platform. 
We assume no changes in inspection or interconnection costs. 

●​ Overhead costs: In our baseline case, we assume that per-project overhead 
costs remain stable over time as overhead scales with increased volume. In 
our smart permitting case, as with customer acquisition we assume a 5% initial 
reduction in cost per project as the complexity of managing individual projects 
is reduced. Over time, we also expect smart permitting to reduce the amount 
of back office logistical work needed for each project. We assume that demand 
increases above the baseline rate can be absorbed with sublinear increases in 
total overhead. without increasing absolute overhead expenditure. As with 
customer acquisition, we assume an increase in volume of X percent is 
associated with an overhead increase of only X/2 percent. 

●​ Profit: We assume that smart permitting will reduce barriers to entry and 
expansion for solar installers (Dong and Wiser 2013), and that this will put 
downward pressure on installer profits. This includes entry into jurisdictions 
that installers have previously avoided due to onerous permitting requirements 
(Ardani et al. 2012). This effect may end up being large, but it will only occur 
gradually as new firms enter the market and existing firms expand. We 
conservatively assume that competition enabled by smart permitting will push 
normal profit margins down by 10% between 2025 and 2040, from 17% in 2025 
to 16.2% in 2040. This only applies to the model derived from Ramasamy et al. 
(2022), since the OpenSolar model does not explicitly estimate installer profit. 

●​ Cancellations: we assume that smart permitting eliminates cancellations due 
to the permitting process. Customers may still cancel for other reasons, but 
because permitting can be done online and instantaneously we consider that 
permitting stops being a driver of cancellations. 
 

We incorporate these parameters into four models in Excel: two baseline models and 
two smart permitting scenarios, based on the Ramasamy et al. and OpenSolar data. 
We make projections through 2040, assuming that smart permitting is implemented 
across the state in 2026. We use these models to project the price of new solar 
photovoltaic systems, the total number of systems installed, and other derived 
quantities. 



 

Photovoltaic System Performance 
In addition to the cost, price, and deployment projections, we also project impacts on 
the household and social level. We start with NREL’s System Advisor Model (NREL 
2024c and Blair et al. 2018) to calculate how solar systems will perform. We input the 
characteristics of our representative system, and run separate models for the state’s 
climate zones. In each climate zone, we use the most populous county as our 
representative modeling point for obtaining weather data, utility prices, and load 
shapes.  
 
To represent the specific regional level of solar potential, we obtain hourly solar 
irradiance at the latitude and longitude of the representative county’s population 
centroid using SAM’s built-in interface with the National Solar Radiation Database 
(Sengupta et al. 2018). To represent regional electricity consumption patterns, we use 
SAM’s built-in interface with the OpenEI Building Load Database, picking the base 
residential load type (NREL 2021). To represent local utility prices, we select the utility 
from SAM’s built-in interface with the OpenEI Utility Rate Database (NREL 2024d). In 
some cases this database does not include the rates paid by utilities for residential 
solar generation, in which case we supplement the data with information from the 
utility itself. 
 
We use SAM to estimate the hourly electricity generation of the representative system 
in each climate zone across the whole year. By comparing the hourly load profiles 
with the hourly generation, SAM generates a projection of how much electricity a 
household can consume from its own solar panels, and how much it imports from 
and exports to the grid. Using the rate data it calculates the net impact on annual 
electricity bills, which we then scale to the total number of systems installed across 
the state. We preserve the default assumption in SAM that capacity degrades by 0.5% 
annually. 
 
Savings differ by climate zone (both because the amount of sun and the average load 
shape differs). We assign each climate zone a share of the annual projected solar 
deployment proportional to the zone’s share of the state’s residential photovoltaic 
potential from NREL’s State and Local Planning for Energy project (NREL 2024e). 
 
We also use the “Fixed Operation and Maintenance Expenses” from the Annual 
Technology Baseline to capture ongoing overhead costs for households, and subtract 
this from net savings. 
 
We also use SAM to calculate how much energy systems generate, and how much of 
that energy is used by the household or exported to the grid. We convert hourly 
energy use estimates into avoided greenhouse gas emissions using state-specific 
projections of hourly grid intensity from 2025-2050 by the Cambium project (Gagnon 



 

et al. 2024). Cambium estimates the long-run marginal emission rate, an “estimate of 
the rate of emissions that would be either induced or avoided by a change in electric 
demand, taking into account how the change could influence both the operation as 
well as the structure of the grid (i.e., the building and retiring of capital assets, such 
as generators and transmission lines). It is therefore distinct from the 
more-commonly-known short-run marginal, which treat grid assets as fixed.”11 We 
consider this the appropriate emissions benchmark for calculating the effect of 
long-lived generating investments like solar photovoltaic panels.12  
 
We use the EPA’s Greenhouse Gas Equivalencies Calculator (EPA 2024) to compare the 
emissions savings to other sources. 

Broader Economic Impacts 
In addition to the savings for individual households, we also estimate impacts on 
solar installation jobs, permit fee revenue for jurisdictions, and jurisdiction staff time. 
 

●​ Jobs 
○​ We start by calculating the baseline number of solar installation and 

project development jobs in the state. We estimate that this is 3,047 in 
2024. 

■​ The calculation begins with data on the number of people in the 
state who spend the majority of their time working in the solar 
industry (IREC 2024). We focus on the subset employed in solar 
installation and project development.13  

■​ IREC also provides an estimate of employees working part-time in 
solar, but does not break this down by occupation. We assume 
that the same share of part-time workers are involved in 
installation & project development as majority-time workers, and 
that a part-time solar job is equivalent to half a majority-time 
solar job.  

■​ We add these figures together to produce an estimate of solar 
installation jobs. We then multiply this by 56%, the national share 
of solar installation jobs that are specifically targeting the 
residential market (IREC 2024). 

13 This excludes manufacturing, wholesale trade & distribution, operations & maintenance, and 
an “other” category. 

12 Note that many state electricity grids are part of larger, cross-state interconnections and 
regional transmission organizations, so the emissions intensity of the state’s generating 
capacity may not be the same as the emissions intensity of the larger grid that the state 
participates in. 

11 Description from https://www.nrel.gov/analysis/cambium.html. 

https://www.nrel.gov/analysis/cambium.html


 

○​ In the baseline scenario we assume that jobs increase proportionally 
with sales volumes. 

○​ In the smart permitting scenario, we model two countervailing effects 
shaping the demand for solar installation labor after smart permitting.  

■​ First, because smart permitting drives up demand for solar 
volumes above the baseline scenario, if the ratio of jobs to 
projects remained stable there would be a proportional increase 
in demand for solar installation labor.  

■​ Second, because smart permitting simplifies different parts of the 
solar installation firm business model, less labor hours are 
needed for each project. We use the fact that soft costs are 
primarily driven by labor to estimate the size of this effect. We 
calculate the ratio between total soft costs in the smart 
permitting and baseline scenarios, excluding any sales taxes or 
profits.  

■​ We multiply this ratio by the number of jobs that would be 
demanded if smart permitting increased sales volumes but labor 
needs per project remained constant. 

○​ The result is that although the labor hours needed for each project go 
down over time, the accompanying increase in volumes more than 
compensates, resulting in a projection of net job gains. 

●​ Jurisdiction Fee Revenue 
○​ We assume that jurisdictions keep their permit fees stable. 
○​ We assume that jurisdictions cover the cost of using a permitting 

software platform. We set this cost to $35 in line with the pricing of 
SolarAPP+ (McAllister 2024).14 This reduces the revenue from each 
project. 

○​ We compare the total fee revenue in the baseline scenario (where 
jurisdictions receive the full fee) with the revenue in the smart 
permitting scenario (where jurisdictions share some of the fee with the 
service provider). 

○​ Despite the assumption that jurisdictions now share some of their 
revenue with a smart permitting platform, at this price the increase in 
volume more than compensates for this choice. 

●​ Jurisdiction Staff Time Savings 
○​ According to Cook et al. (2024) jurisdictions save between 25 and 60 

minutes of staff time on average per permit after adopting SolarAPP+. 
We assume that as jurisdictions grow more comfortable with the system 
they will get the higher end of time savings, and so count savings as one 
hour for every project deployed in the smart permitting scenario (since 

14 We use SolarAPP+ as a benchmark; other service providers may charge different prices for 
smart permitting. 



 

by definition there are no time savings in the baseline scenario) to arrive 
at our estimate of staff time saved. 

○​ We assume that jurisdictions reassign relevant staff to other permitting 
issues rather than dismissing them. 
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